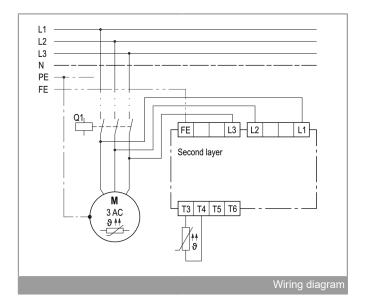


INT69° YF Diagnose

Application

The INT69 YF Diagnose is a universal and versatile protection relay. The following inputs and outputs are available for monitoring electrical components:


Terminals	Inputs and outputs	
L/L+, N/L-	Supply voltage	
	113	
T1, T2	Motor temperature (PTC, Pt100, Pt1000,	
	bimetal)	
T3, T4	Temperature 1 (PTC, Pt100, Pt1000)	
T5, T6	Temperature 2 (PTC, Pt100, Pt1000)	
E1+, E1-	Leakage 1 (resistance measurement, switching	
	input)	
E2+, E2-	Leakage 2 (resistance measurement, switching	
	input)	
FE	Functional ground	
L1, L2, L3	Phase monitoring with phase sequence, phase	
	failure, phase asymmetry, undervoltage and	
	overvoltage	
11, 14, 12	Alarm relay	

Parametrization enables protection functions and response settings to be adapted flexibly to suit the application.

The INT69 YF Diagnose saves operating and fault data in a non-volatile memory. This data can be read out and evaluated for diagnostic purposes.

Parameterization and diagnostics are possible via the built-in diagnostic port (DP) using the INTspector app and with separately available accessories.

This protection relay device is used primarily for the protection of pumps and agitators.

Functional description

All monitoring functions are configurable via simple parameterization using the INTspector app.

The following operating states of the inputs are described as active, but can be deactivated via parameterization.

Temperature monitoring is performed according to the evaluation method of a PTC, Pt100 or Pt1000. The monitoring of a PTC sensor switches off the alarm relay without delay when the nominal response temperature is reached. The monitoring of a Pt100 and Pt1000 switches off when the adjustable temperature limits are reached after the adjustable tripping delay of the alarm relay has elapsed. A short circuit or an interruption at a temperature input will cause the alarm relay to switch off. The temperature monitoring of the motor winding can additionally be carried out according to the evaluation procedure of a bimetal switch. When the bimetal switch is opened, the alarm relay is switched off without delay.

Leakage monitoring is based on the evaluation method of an ohmic resistor. The monitoring switches off when the adjustable limits are reached after the adjustable tripping delay of the alarm relay has elapsed. Leakage monitoring can additionally be carried out according to the evaluation method of a switch. When the switch is opened or closed, the alarm relay is switched off without delay.

Phase monitoring of the motor voltage is active from 6 s after motor start. The correct phase sequence is monitored for 5 s, phase failure, phase asymmetry, undervoltage and overvoltage during the entire motor running time. If the phase sequence is incorrect, the protection relay locks. The alarm relay is also switched off in the event of phase asymmetry, failure, undervoltage or overvoltage after the adjustable limits have been reached and after the adjustable tripping delay has elapsed. After the motor has stopped, the phase monitoring is deactivated for approx. 2 s to prevent unintentional locking due to brief reverse running of the machine.

The **switching frequency monitoring** records switching operations per time period. When the adjustable switching is exceeded within the settable time period, the alarm relay is switched off.

The INT69 YF diagnostics has a service interval function. Restarting the **service interval** loads the adjustable interval time. After the time has elapsed, the service is signaled by the built-in LED (parameterizable).

Adjustable parameters (see parameter table) can be set via the diagnostic port (DP) using INTspector app with separately available accessories. The **LED** indicates the current status of the protection

relay (see the flashing code). In fault-free operation, the installed LED shows a steady green light. The **alarm relay** is energized. If an error is detected, the alarm relay drops out. The relay operates according to the closed-circuit current principle. Reconnection after a lockout is only possible after a network reset >5 s.

All detected events such as warnings, errors or messages are stored in a non-volatile internal memory and can be read out via the diagnostic port (DP) and the INTspector app. The event memory contains the last 20 events.

The **INTspection memory** records all measured values for the adjustable time range. If an error occurs, the measured values for the time range are provided during, before and after the time of the error.

For proper operation, the functional ground (FG) must be connected and the supply voltage must be permanently present.

Safety notices

Installation, maintenance and operation must be carried out by a qualified electrician.

The applicable European and country-specific standards for the connection of electrical equipment must be observed.

Outgoing connected sensors and connecting cables from the terminal box must have at least basic insulation.

Fittings

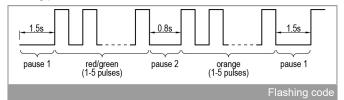
INTspector app

The INTspector app is required for parameterisation and diagnostics with the protective relay.

INT600 DU gateway

02 S 365 S21

USB gateway, direct connection between INT69 YF Diagnose and the PC, smartphone or tablet


Ordering information

INT69 YF Diagnose	22 A 700 P081
(100-240 V ~ 50/60 Hz)	
INT69 YF Diagnose	20 A 700 P081
(24 V ~/= 50/60 Hz)	
Further product information	see www.kriwan.com

Flashing code

The KRIWAN flashing code is used for quick and easy status indication and troubleshooting.

The flashing code consists of a cyclic flashing sequence. In the event of a fault, the flashing sequence consists of red and orange pulses. If warnings are pending, the sequence consists of green and orange pulses. The current status can be determined from the number of flashing pulses.

Overview of flashing code

Status	Description
Steady green	Machine ready for operation
Flashing green	Machine in operation

Status	Description
Steady orange	Machine ready for operation, service
	due
Orange flashing	Machine in operation, service due
Green / orange flashing	Warning, see the description below
Red / orange flashing	Fault, machine is shut down, see the
	description below

LED	1. Flashing	2. Flashing	Description
	sequence	sequence	
Warning	1x green	1x orange	Motor temperature:
Fault	1x red	1x orange	switch-off, permissible
			winding temperature
			exceeded
Fault	1x red	4x orange	Motor temperature:
			sensor input detected an
			open or short circuit
Fault	2x red	1x orange	Phase monitoring:
			incorrect phase sequence
Warning	2x green	2x orange	Phase monitoring:
Fault	2x red	2x orange	Phase failure/asymmetry
Warning	2x green	3x orange	Phase monitoring:
Fault	2x red	3x orange	undervoltage/overvoltage
Fault	2x red	4x orange	Phase monitoring:
			Restart delay after "Phase
			monitoring" error
Warning	3x green	1x orange	Temperature input 1:
Fault	3x red	1x orange	switch-off/warning,
			permissible temperature
			exceeded
Warning	3x green	2x orange	Temperature input 2:
Fault	3x red	2x orange	switch-off/warning,
			permissible temperature
			exceeded
Fault	3x red	4x orange	Temperature input 1:
			sensor input detected an
			open or short circuit
Fault	3x red	5x orange	Temperature input 2:
			sensor input detected an
			open or short circuit
Warning	4x green	1x orange	Leakage 1:
Fault	4x red	1x orange	Switch-off/warning,
			permissible limit exceeded/
			undershot
Warning	4x green	3x orange	Leakage 2:
Fault	4x red	3x orange	Switch-off/warning,
			permissible limit exceeded/
Coult	Evrad	14 010000	undershot
Fault	5x red	1x orange	General:
F 12	F	0	internal error
Fault	5x red	2x orange	General:
			Supply voltage too low
Warning	5x green	5x orange	General:
Fault	5x red	5x orange	switching frequency switch-
			off/, permissible switches
			exceeded

-			
	nnı	ıcal	data
166		ıcaı	uata

Technical data		
Supply voltage		
22 A 700 P081	100-240 V ~ 50/60 Hz 9 VA	
20 A 700 P081	24 V ~/= 50/60 Hz 9 VA	
Permissible ambient temperature	-30 °C ≤ Ta ≤ +70°C	
T _a		
Maximum usage height	2000 m	
Temperature measuring circuit,		
bimetal		
– Туре	for an NC contact	
 Contact suitable for 	24 V = 20 mA	
 Max. line length 	30 m	
PTC temperature measuring		
circuit		
– Туре	1-9 PTC sensors according to	
	DIN VDE V 0898-1-401 in series	
- R _{25, total}	<1.8 kΩ	
 R_{Triggering, static} 	4.5 kΩ ±20%	
- R _{Reset}	2.75 kΩ ±20%	
 Short circuit monitoring 	<20 Ω	
Break monitoring	>20 kΩ	
 Applied voltage 		
 Motor temperature 	24 V ==	
Temperature 1	5 V	
- Temperature 2	5 V =-	
 Max. line length 	30 m	
Pt100 temperature measuring		
circuit		
 Measuring range 	- 50 +300 °C	
Resolution	1 K	
Accuracy	5% of measuring range final	
	value	
 Short circuit monitoring 	<20 Ω	
 Break monitoring 	>400 Ω	
 Applied voltage 		
 Motor temperature 	24 V =	
 Temperature 1 	5 V =	
 Temperature 2 	5 V =	
Max. line length	30 m	
Pt1000 temperature measuring		
circuit		
Measuring range	- 50 +300 °C	
- Resolution	1 K	
Accuracy	5% of measuring range final	
 Short circuit monitoring 	value <20 Ω	
Snort circuit monitoring Break monitoring	<20 Ω >2.3 kΩ	
Applied voltage	- 2.0 N12	
Applied voltage Motor temperature	24 V =	
Temperature 1	5 V =	
Temperature 2	5 V =	
Max. line length	30 m	
	1	

Leakage measuring circuit	
– Туре	Resistance measurement
	between electrode pairs
 Measuring range 	10 kΩ - 1 MΩ
Resolution	1 kΩ
Accuracy	±10 % of full scale in measuring
	range 10 k - 100 kΩ
	±25% of full scale in measuring
	range 101 k - 1 MΩ
 Applied voltage 	Approx. 24 V ~
 Max. line length 	30 m
Switching input	
– Туре	For a floating NC or NO contact
	(e.g., reset button)
 Contact suitable for 	24 V = 20 mA
 Max. line length 	30 m
Phase measurement	
 Measuring range, phase- 	50/60 Hz ~, 100690 V~ ±10 %
phase	
Max. line length	30 m
Interface	Diagnostic port (DP)
Reset of lock or restart delay	Network reset >5 s only possible
	once any errors have been
	rectified
Relay alarm	
 Contact 	240 V ~, 2.5 A C300
	Min. 24 V ~/= 20 mA
 Mechanical service life 	Approx. 1 million cycles
Degree of protection as per EN 60529	IP20
Connection type	
General	Tension spring connection (push
	in) 0.2-2.5 mm ²
Housing material	PA 66 GF 30
Fixing	Control cabinet housing (basic
	grid 45 mm), clippable on to
	35 mm standard rail as per EN
	60715
Dimensions	See dimensions in mm
Weight	
- 22 A 700 P081	Ca. 300 g
- 20 A 700 P081	Ca. 300 g
Test regulations	EN 61000-6-2
	EN 61000-6-3
	EN 61010-1
	Overvoltage category III (pay
	attention to temperature sensor
	insulation)
	Degree of pollution 2
	UL File No. E473026 cURus

KRIWAN Industrie-Elektronik GmbH

Allmand 11

74670 Forchtenberg info@kriwan.com

Deutschland phone: (+49) 7947 822 0 www.kriwan.com

